Saturday 22 June 2013

KEJADIAN ALAM DI MALAM NISFU SYAABAN.....



'Bigger and brighter supermoon' lights up night sky


2013 'supermoon' in Tarifa, Spain Although many UK sky-watchers were disappointed due to cloud cover, Spanish observers were treated to a much better view

 

The night sky has been illuminated by what appears to be a much bigger and brighter Moon.

The so-called "supermoon" occurs when the Moon reaches its closest point to earth, known as a perigee full moon.

The effect makes the Moon seem 14% bigger and 30% brighter than when it is furthest from the planet.

Skywatchers who miss the phenomenon this weekend because of cloudy skies will have to wait until August 2014 for the next one.

Space expert Heather Couper said "supermoons" were the result of coincidence.

"The Moon goes round in an oval orbit so it can come very close to us, and if that coincides with a full moon, then it can look absolutely enormous," she told BBC Radio 4's Today programme.

She explained that when the Moon was high in the sky, it looked normal.


But as it got closer to the horizon, a "kind of optical illusion" occurred where it looked bigger when compared with trees or houses, she said.

She suggested it might be possible to dispel the illusion by turning away from the Moon, bending over and looking at the sky from between your legs.

Writing in Sky and Telescope about the "myth of the supermoon", Shari Balouchi said much of what we called the supermoon was just our eyes playing tricks on us.

"The supermoon might look bigger than normal if you see it in the evening when the Moon's just rising, but the real size difference isn't big enough to notice."

BBC Weather's Darren Bett said he was confident most people in the UK would have been able to see the Moon at some point on Saturday night, even if only fleetingly.

Sunday night should be better, he added, with people in south-west England and south Wales likely to have the clearest views of the Moon.

However Marek Kukula, public astronomer at the Royal Observatory Greenwich, said people should not expect the supermoon to look that much bigger than normal.

"It won't fill the sky," he said.

"It's at its most impressive when the Moon is close to the horizon, ie when it's rising or setting - people will need to check online for rising and setting times for their locality."

Dr Kukula said the US Naval Observatory and HM Nautical Almanac Office had online tools for checking the moon's rising and setting times.

Scientists have dismissed the idea that the perigee can cause strange behaviour, like lycanthropy or natural disasters.

Dr Couper said the tides this weekend would be unaffected.

We'd like to see your pictures of the supermoon.

Sunday 16 June 2013

Bulan Nan Terang

 
 
 
Bulan adalah satu-satunya satelit alami Bumi, dan merupakan satelit alami terbesar ke-5 di Tata Surya. Bulan tidak mempunyai sumber cahaya sendiri dan cahaya Bulan sebenarnya berasal dari pantulan cahaya Matahari.
Jarak rata-rata Bumi-Bulan dari pusat ke pusat adalah 384.403 km, sekitar 30 kali diameter Bumi. Diameter Bulan adalah 3.474 km,[1] sedikit lebih kecil dari seperempat diameter Bumi. Ini berarti volume Bulan hanya sekitar 2 persen volume Bumi dan tarikan gravitasi di permukaannya sekitar 17 persen daripada tarikan gravitasi Bumi. Bulan beredar mengelilingi Bumi sekali setiap 27,3 hari (periode orbit), dan variasi periodik dalam sistem Bumi-Bulan-Matahari bertanggung jawab atas terjadinya fase-fase Bulan yang berulang setiap 29,5 hari (periode sinodik).
Massa jenis Bulan (3,4 g/cm³) adalah lebih ringan dibanding massa jenis Bumi (5,5 g/cm³), sedangkan massa Bulan hanya 0,012 massa Bumi.
Bulan yang ditarik oleh gaya gravitasi Bumi tidak jatuh ke Bumi disebabkan oleh gaya sentrifugal yang timbul dari orbit Bulan mengelilingi Bumi. Besarnya gaya sentrifugal Bulan adalah sedikit lebih besar dari gaya tarik-menarik antara gravitasi Bumi dan Bulan. Hal ini menyebabkan Bulan semakin menjauh dari Bumi dengan kecepatan sekitar 3,8 cm/tahun.
Bulan berada dalam orbit sinkron dengan Bumi, hal ini menyebabkan hanya satu sisi permukaan Bulan saja yang dapat diamati dari Bumi. Orbit sinkron menyebabkan kala rotasi sama dengan kala revolusinya.
Di bulan tidak terdapat udara ataupun air. Banyak kawah yang terhasil di permukaan bulan disebabkan oleh hantaman komet atau asteroid. Ketiadaan udara dan air di bulan menyebabkan tidak adanya pengikisan yang menyebabkan banyak kawah di bulan yang berusia jutaan tahun dan masih utuh. Di antara kawah terbesar adalah Clavius dengan diameter 230 kilometer dan sedalam 3,6 kilometer. Ketidakadaan udara juga menyebabkan tidak ada bunyi dapat terdengar di Bulan.
Bulan adalah satu-satunya benda langit yang pernah didatangi dan didarati manusia. Objek buatan pertama yang melintas dekat Bulan adalah wahana antariksa milik Uni Sovyet, Luna 1, objek buatan pertama yang membentur permukaan Bulan adalah Luna 2, dan foto pertama sisi jauh bulan yang tak pernah terlihat dari Bumi, diambil oleh Luna 3, kesemua misi dilakukan pada 1959. Wahana antariksa pertama yang berhasil melakukan pendaratan adalah Luna 9, dan yang berhasil mengorbit Bulan adalah Luna 10, keduanya dilakukan pada tahun 1966.[1] Program Apollo milik Amerika Serikat adalah satu-satunya misi berawak hingga kini, yang melakukan enam pendaratan berawak antara 1969 dan 1972.


Fase bulan pada saat mengelilingi Bumi

Fase bulan
Bulan purnama adalah keadaan ketika Bulan tampak bulat sempurna dari Bumi. Pada saat itu, Bumi terletak hampir segaris di antara Matahari dan Bulan, sehingga seluruh permukaan Bulan yang diterangi Matahari terlihat jelas dari arah Bumi.
Kebalikannya adalah saat bulan mati, yaitu saat Bulan terletak pada hampir segaris di antara Matahari dan Bumi, sehingga yang 'terlihat' dari Bumi adalah sisi belakang Bulan yang gelap, alias tidak nampak apa-apa.
Di antara kedua waktu itu terdapat keadaan bulan separuh dan bulan sabit, yakni pada saat posisi Bulan terhadap Bumi membentuk sudut tertentu terhadap garis Bumi - Matahari. Pada saat itu, hanya sebagian permukaan Bulan yang disinari Matahari yang terlihat dari Bumi.

Asal usul[sunting]

Asal - usul bulan tidak diketahui secara pasti, tetapi para ilmuwan menemukan bukti bahwa Bulan berasal dari tubrukan Bumi dengan planet kecil yang bernama Theia sekitar 4,5 miliar tahun yang lalu, dan menghasilkan debu yang berjumlah sangat banyak dan mengorbit di sekeliling Bumi dan akhirnya debu mengumpul dan membentuk bulan. Pada awalnya jarak bulan pada pertama kali hanya sekitar 30.000 mil atau 15 kali lebih dekat dari jarak Bulan dengan Bumi sekarang. Dari hasil penelitian Bulan menjauh sekitar 3,8 cm per tahunnya.

Wednesday 12 June 2013

Planet Zuhal Atau Saturn


JOM KENALI PLANET ZUHAL....


Zuhal merupakan planet yang keenam dari Matahari dan planet kedua terbesar di dalam Sistem Suria, selepas Musytari. Zuhal, bersama-sama dengan Musytari, Uranus dan Neptun, diklasifikasikan sebagai sebuah planet gergasi bergas.
Zuhal berasal dari bahasa Arab tetapi sekiranya dilihat didalam Bahasa Inggeris, ia dikenali sebagai planet Saturn, diambil sempena tuhan Rom, Saturnus, yang menyerupai Yunani Kronos (Titan bapa kepada Zeus) dan juga Babylon iaitu Ninurta. Simbolnya adalah sabit dewa dalam bentuk ringkas stylized (Unicode: ♄).
Terdapat juga lingkaran asteroid yang kebanyakannya mengelilingi matahari di antara orbit planet Marikh dan Musytari. Disebabkan oleh putaran, garis pusat pada garis khatulistiwa adalah terpanjang bagi setiap planet dan bintang.
Zuhal mempunyai satu sistem gelang atau cecincin yang utama terdiri kebanyakannya dari air batu dengan sejumlah kecil serpihan batuan dan debu. Sebanyak enam puluh bulan-bulan mengorbit planet berkenaan. Titan, bulan Zuhal yang terbesar (selepas Ganymede), yang merupakan bulan yang lebih besar dari planet Utarid dan ia merupakan satu-satunya bulan di dalam Sistem Solar yang mempunyai kemudahan atmosfera.[5]

Isi kandungan

[sorokkan]

Ciri fizikal[sunting]

Perbandingan kasar saiz Zuhal dan Bumi
Disebabkan kombinasi terhadap ketumpatannya yang rendah, putarannya yang pantas dan keadaan berbentuk cecair, Zuhal merupakan satu sfera yang agak lonjong; iaitu, ia mempunyai sedikit leper di bahagian kutub-kutub dan mengempar di bahagian khatulistiwa. Jejari khatulistiwa dan kutub berbeza sebanyak 10%—60 268 km melawan 54 364 km.[3]Planet-planet gas yang lain juga berkeadaan sedemikian, tetapi agak kurang.

Bahagian dalaman[sunting]

Bahagian dalam Zuhal menyerupai Musytari, dengan teras berbatu, diselitupi lapisan cecair hidrogen logam (metallic hydrogen), dan lapisan hidrogen molekul di atasnya. Terdapat juga sedikit kesan pelbagai ais. Zuhal mempunyai bahagian teras yang panas, mencecah 12000 K ditengah terasnya, dan ia membebaskan lebih banyak tenaga ke angkasa berbanding yang diterimanya daripada Matahari. Kebanyakan tenaga lebih dihasilkan melalui mekanisma Kelvin-Helmholtz (pemampatan graviti perlahan), tetapi ini sahaja tidak mencukupi bagi menjelaskan penghasilan haba Zuhal. Mekanisma tambahan yang diutarakan dengan mana Zuhal mampu menghasilkan sebahagian haba adalah "hujan" titisan helium jauh di dalam Zuhal, titisan helium membebaskan haba melalui geseran semasa ia jatuh melalui hidrogen yang lebih ringan.
Pembebasan haba Zuhal, titik panas jelas di bahagian bawah imej betul-betul di kutub selatan Zuhal.
Atmosphera Zuhal menunjukkan pola berbelang menyerupai Musytari, tetapi belang Zuhal adalah lebih pudar dan ia juga lebih lebar di bahagian ekuator. Awan Zuhal tidak dapat dilihat sehinggalah lintasan (flybys) Voyager. Semenjak itu, bagaimanapun, teleskop di bumi telah meningkat sehingga pencerapan biasa mampu dilakukan. Zuhal menunjukkan bentuk bujur yang lama dan ciri-ciri lain yang biasa di Musytari; pada tahun 1990 teleskop Angkasa Hubble mencerap awan putih gergasi berhampiran ekuator Zuhal yang tidak kelihatan semasa pertembungan dengan Voyager dan pada tahun 1994 ribut lain yang lebih kecil dikesan. Pakar kaji bintang menggunakan penimej infra menunjukkan bahawa Zuhal mempunyai pusaran kutub panas, dan satu-satunya planet dalam sistem suria yang diketahui bersifat sedemikian.

Ciri putaran[sunting]

Oleh kerana Zuhal tidak berputar pada paksinya pada kadar sekata, dua tempoh putaran telah digunakan baginya, sama seperti kes Musytari: Sistem I mempunyai tempoh 10 jam 14 minit 00 saat (844.3°/d) dan merangkumi Zon Ekuatorial, yang menjulur dari hujung utara Ekuatorial Selatan sehingga hujung selatan Ekuatorial Utara. Semua latitude lain Zuhal telah diberikan tempoh putaran 10 jam 39 minit 24 saat (810.76°/d), yang merupakan Sistem II. Sistem III, diasaskan pada pancaran radio dari planet, mempunyai tempoh 10 jam 39 minit 22.4 saat (810.8°/d); kerana ia amat hampir kepada nilai Sistem II, ia telah digantikan secara menyeluruh.
Apabila menghampiri Zuhal pada tahun 2004, kapal angkasa Cassini mendapati bahawa putaran radio Zuhal telah meningkat sedikit, kepada anggaran 10 jam 45 minit 45 saat (± 36 s). [1] Punca sebenar perubahan tersebut tidak diketahui.

Gelang Zuhal[sunting]

Rencana utama: Gelang Zuhal
Zuhal kemungkinannya paling dikenali disebabkan gelang atau cecincin planetnya, yang menjadikannya sebagai salah satu objek dapat dilihat yang paling menakjubkan dalam sistem suria.
Imej Teleskop Angkasa Hubble, diambil pada Oktober 1996 menunjukkan gelang Zuhal dari jarak sejajar

Sejarah[sunting]

Gelang itu pertama sekali dilihat oleh Galileo Galilei pada tahun 1610 dengan teleskopnya, tetapi dia tidak dapat memastikannya. Dia kemudian menulis kepada Grand Duke of Tuscany bahawa "Zuhal tidak bersendirian tetapi terdiri daripada tiga, yang hampir bersentuhan dan tidak bergerak berbanding sesama sendiri. Mereka tersusun dalam garis setentang dengan zodiak, dan yang di tengah [Zuhal] adalah tiga kali saiz yang lurus [penjuru gelang]". Dia juga menggambarkan Zuhal sebagai mempunyai "telinga." Pada tahun 1612 sudut gelang menghadap tepat pada bumi dan gelang kelihatannya hilang, dan kemudian pada 1613 ia muncul kembali, mengelirukan lagi Galileo.
Persoalan gelang itu tidak dapat diselesaikan sehingga 1655 oleh Christian Huygens, yang menggunakan teleskop yang lebih berkuasa berbanding dengan yang ada pada Galileo pada masanya.
Pada tahun 1675 Giovanni Domenico Cassini menentukan bahawa gelang Zuhal sebenarnya terdiri daripada pelbagai gelang lebih kecil dengan ruang antara mereka; ruang terbesar dinamakan Pembahagi Cassini (Cassini Division).

Ciri fizikal gelang[sunting]

Gelang tersebut boleh dilihat dengan menggunakan teleskop moden berkuasa serdahana atau dengan teropong berkuasa tinggi. Ia menjulur 6,630 km hingga 120,700 km atas khstulistiwa Zuhal, dan terdiri daripada batu silika, oksida besi, dan ketulan air batu bersaiz kumin sehingga kereta kecil. Terdapat dua teori mengenai asal cicin Zuhal. Teori pertama diusulkan oleh Édouard Roche pada abad ke 19, adalah gelang tersebut merupakan bekas bulan Zuhal yang orbitnya reput sehingga ia cukup dekat sehingga berkecai akibat kuasa pasang surut (lihat had Roche). Variasi teori ini adalah bulan tersebut berkecai akibat hentaman komet atau asteroid. Teori kedua adalah cicin tersebut bukanlan dari bulan Zuhal, tetapi bahan lebihan nebula asal yang membentuk Zuhal. Teori ini tidak diterima masa kini disebabkan gelang Zuhal dianggap tidak stabil merentasi jutaan tahun, dan dengan itu dianggap baru terbentuk.
Sementara ruang terluas di gelang, seperti Renggang Cassini (Cassini division) dan Renggang Encke, boleh dilihat dari Bumi, Voyager mendapati gelang tersebut mempunyai struktur seni yang terdiri dari "beribu" renggangan kecil dan gelang (ringlets). Struktur ini dipercayai terbentuk akibat tarikan graviti bulan-bulan Zuhal melalui pelbagai cara. Sesetengah ruang terhasil akibat laluan bulan kecil seperti Pan, dan banyak lagi ruang yang belum dijumpai, sementara sesetengah gelang kecil dikekalkan oleh medan graviti satelit penggembala kecil seperti Prometheus dan Pandora. Ruangan lain terbentuk akibat "getaran" antara tempoh orbit zarah direnggang dengan bulan yang lebih besar yang terletak lebih jauh; Mimas mengekalkan renggangan Cassini melalui cara ini. Malah lebih berstruktur dalam gelang sebenarnya terdiri dari gelombang berputar yang dihasilkan oleh ganguan graviti bulan secara berkala.

Jejari gelang[sunting]

Jejari dalam gelang B, imej oleh Voyager 2 pada tahun 1981.
Sehingga 1980, struktur gelang dijelaskan sepenuhnya sebagai tindakan kuasa graviti. Kapal angkasa Voyager menjumpai ciri-ciri jejari gelap (dark radial) dalam gelang B, dikenali sebagai paksi, yang tidak dapat dijelaskan melalui cara ini, disebabkan ketegaran mereka dan pusingan mengelilingi gelang yang tidak selari dengan mekanik orbit. Ia dianggap bahawa mereka berkait dengan interaksi eletromagnet, kerana ia berputar hampir sejajar dengan magnetosfera Zuhal. Bagaimanapun, mekanisma sebenar paksi (spokes) tersebut masih belum diketahui.
Pada Februari 2005, kapal angkasa Cassini tidak dapat menjejak sebarang paksi dalam gelang, walaupun mempunyai perkakasan pengimej berkualiti lebih tinggi berbanding Voyagers'. Ia berkemungkinan bahawa paksi muncul dan ghaib secara bermusim.

Penjelajahan Zuhal[sunting]

Lintasan Pioneer 11[sunting]

Zuhal dilawati pertama kali oleh Pioneer 11 pada tahun 1979. Ia melintasi sekitar 20,000 km dari atas awan planet. Imej resolusi rendah planet dan beberapa bulannya diambil. Bagaimanapun, resolusinya tidak cukup bagus untuk memastikan ciri-cirinya. Kapal angkasa itu juga mengkaji gelang; antara jumpaan lain adalah gelang-F nipis dan fakta bahawa ruang gelap antara gelang menjadi terang apabila dilihat kearah Matahari, ataupun dalam kata lain, ia mempunyai jisim dan bukannya vakum semata. Kapal angkasa Pioneer 11 juga mengukur suhu Titan. [2]

Lintasan Voyager[sunting]

Pada November, 1980, kuar Voyager 1 melawat sistem Zuhal. Ia menghantar balik imej planet, gelang, dan satelit revolusi tinggi yang pertama. Ciri-ciri permukaan pelbagai bulan dilihat buat pertama kali. Voyager 1 melaksanakan lintasan hampir dengan bulan Titan telah menambah pengetahuan kita mengenai atmosphere bulan. Bagaimanapun, ia juga membuktikan bahawa atmosphere Titan tidak dapat ditembusi gelombang cahaya penglihatan, oleh itu dengan itu permukaan Titan tidak dapat dilihat. Lintasan ini juga menukar haluan kapal angkasa keluar daripada dataran planet dalam sistem suria.
Hampir setahun kemudian, pada Ogos 1981, Voyager 2 menyambung kajian mengenai sistem Zuhal. Lebih banyak gambar dekat bulan Zuhal dihasilkan, termasuk juga bukti pertukaran pada atmosphere dan gelang. Malangnya, ketika lintasan lalu, kamera kuar terlekat dan sebahagian penggambaran yang dirancang gagal. Graviti Zuhal digunakan bagi mengarah haluan kapal angkasa kearah (Uranus).
Kuar itu menjumpai dan mengesahkan beberapa satelit baru mengelilingi berhampiran atau antara gelang planet. Ia juga menjumpai renggangan Mawxell dan Keeler yang kecil.

Pengorbit Cassini[sunting]

Zuhal dalam warna aslinya, dilihat dari Cassini
Pada 1 Julai 2004, kapal angkasa Cassini-Huygens melaksanakan pergerakan Selitan Orbit Zuhal - SOI (Saturn Orbit Insertion) dan memasuki orbit mengelilingi Zuhal. Sebelum SOI Cassini telah mengkaji sistem tersebut dengan teliti. Pada Jun 2004, ia telah melaksanakan lintasan hampir dengan Phoebe menghantar balik imej dan data beresolusi tinggi. Pengorbit (orbiter) menyempurnakan dua lintasan Titan sebelum membebaskan kuar Huygens pada 25 Disember 2004. Huygens mendarat pada permukaan Titan pada 14 Januari 2005 dan menghantar banyak maklumat semasa melalui atmosphera dan selepas pendaratan. Sehingga 2005, Cassini sedang melaksanakan lintasan berterusan melalui Titan dan satelit beku. Misi utama berakhir pada 2008 apabila kapal angkasa telah menamatkan 74 orbit mengelilingi planet.
Untuk maklumat dan berita terkini, lihat Laman Cassini.

Bulan-bulan Zuhal[sunting]

Rencana utama: Satelit semulajadi Zuhal
Zuhal mempunyai sejumlah besar bulan yang mana 49 telah disahkan, 34 telah diberikan nama. Jumlah sebanar tidak mungkin dapat dipastikan kerana kesemua serpihan air batu yang terdapat dalam gelang Zuhal adalah secara teknikalnya merupakan bulan, dan ia sukar untuk memastikan antara partikal besar atau bulan kecil. Bulan Zuhal yang paling jelas adalah Titan, satu-satunya bulan dalam sistem suria yang mempunyai atmosphera tebal.
Akibat kuasa pasang surut Zuhal, bulan-bulan tersebut tidak terletak pada posisi yang sama semenjak pembentukan mereka.
Untuk garis waktu tarikh jumpaan, lihat Garis waktu satelit semulajadi.

Pemandangan terbaik Zuhal[sunting]

Pertentangan Zuhal: 2001-2029
Sementara ia menjadi sasaran menyeronokkan untuk ditontoni pada kebanyakan masa ia boleh dilihat di langit, Zuhal dan gelangnya boleh dilihat dalam pemandangan terbaik apabila planet berkenaan pada atau berdekatan dengan pertentangan (satu konfigurasi planet semasa ia berada pada pemanjangan (elongation) sebanyak 180° dan oleh itu ia nampak bertentangan dengan matahari di langit.) Dalam keadaan bertentangan pada Januari 13 2005, Zuhal nampak di dalam keadaan paling terang sehinggalah pada tahun 2031, kebanyakan disebabkan orientasi gelang yang banyak membantu relatif kepada bumi.
Saturn nampak pada mata kasar sebagai satu bintang kekuningan yang sangat terang, biasanya di antara magnitud +1 dan 0 dan mengambil masa sekurang-kurang mengambil masa 29 dan satu tahun setengah untuk melengkapkan litar satu ecliptik terhadap buruj zodiak. Alat bantu optik(satu pasangan binokular atau satu teleskop) pembesaran sekurang-kurangnya 20X adalah diperlukan untuk menyelesaikan gelang Zuhal bagi kebanyakan orang.

Jarak Zuhal di dalam Sistem Suria[sunting]

Jarak purata planet dengan matahari dalam sistem suria adalah seperti berikut:
57.9 juta kilometer ke Utarid
108.2 juta kilometer ke Zuhrah
149.6 juta kilometer ke Bumi
227.9 juta kilometer ke Marikh
778.3 juta kilometer ke Musytari
2,871.0 juta kilometer ke Uranus
4,497.0 juta kilometer ke Neptun
5,913.5 juta kilometer ke Pluto.
Related Posts Plugin for WordPress, Blogger...